control.matlab.tf¶
-
control.matlab.
tf
(num, den[, dt])¶ Create a transfer function system. Can create MIMO systems.
The function accepts either 1, 2, or 3 parameters:
tf(sys)
Convert a linear system into transfer function form. Always creates a new system, even if sys is already a TransferFunction object.
tf(num, den)
Create a transfer function system from its numerator and denominator polynomial coefficients.
If num and den are 1D array_like objects, the function creates a SISO system.
To create a MIMO system, num and den need to be 2D nested lists of array_like objects. (A 3 dimensional data structure in total.) (For details see note below.)
tf(num, den, dt)
Create a discrete time transfer function system; dt can either be a positive number indicating the sampling time or ‘True’ if no specific timebase is given.
tf('s')
ortf('z')
Create a transfer function representing the differential operator (‘s’) or delay operator (‘z’).
- Parameters
sys (LTI (StateSpace or TransferFunction)) – A linear system
num (array_like, or list of list of array_like) – Polynomial coefficients of the numerator
den (array_like, or list of list of array_like) – Polynomial coefficients of the denominator
- Returns
out – The new linear system
- Return type
TransferFunction
- Raises
ValueError – if num and den have invalid or unequal dimensions
TypeError – if num or den are of incorrect type
Notes
num[i][j]
contains the polynomial coefficients of the numerator for the transfer function from the (j+1)st input to the (i+1)st output.den[i][j]
works the same way.The list
[2, 3, 4]
denotes the polynomial.
The special forms
tf('s')
andtf('z')
can be used to create transfer functions for differentiation and unit delays.Examples
>>> # Create a MIMO transfer function object >>> # The transfer function from the 2nd input to the 1st output is >>> # (3s + 4) / (6s^2 + 5s + 4). >>> num = [[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]]] >>> den = [[[9., 8., 7.], [6., 5., 4.]], [[3., 2., 1.], [-1., -2., -3.]]] >>> sys1 = tf(num, den)
>>> # Create a variable 's' to allow algebra operations for SISO systems >>> s = tf('s') >>> G = (s + 1)/(s**2 + 2*s + 1)
>>> # Convert a StateSpace to a TransferFunction object. >>> sys_ss = ss("1. -2; 3. -4", "5.; 7", "6. 8", "9.") >>> sys2 = tf(sys1)