Cruise control design example (as a nonlinear I/O system)

Code

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# cruise-control.py - Cruise control example from FBS
# RMM, 16 May 2019
#
# The cruise control system of a car is a common feedback system encountered
# in everyday life. The system attempts to maintain a constant velocity in the
# presence of disturbances primarily caused by changes in the slope of a
# road. The controller compensates for these unknowns by measuring the speed
# of the car and adjusting the throttle appropriately.
#
# This file explore the dynamics and control of the cruise control system,
# following the material presenting in Feedback Systems by Astrom and Murray.
# A full nonlinear model of the vehicle dynamics is used, with both PI and
# state space control laws.  Different methods of constructing control systems
# are show, all using the InputOutputSystem class (and subclasses).

import numpy as np
import matplotlib.pyplot as plt
from math import pi
import control as ct

#
# Section 4.1: Cruise control modeling and control
#

# Vehicle model: vehicle()
#
# To develop a mathematical model we start with a force balance for
# the car body. Let v be the speed of the car, m the total mass
# (including passengers), F the force generated by the contact of the
# wheels with the road, and Fd the disturbance force due to gravity,
# friction, and aerodynamic drag.

def vehicle_update(t, x, u, params={}):
    """Vehicle dynamics for cruise control system.

    Parameters
    ----------
    x : array
         System state: car velocity in m/s
    u : array
         System input: [throttle, gear, road_slope], where throttle is
         a float between 0 and 1, gear is an integer between 1 and 5,
         and road_slope is in rad.

    Returns
    -------
    float
        Vehicle acceleration

    """
    from math import copysign, sin
    sign = lambda x: copysign(1, x)         # define the sign() function
    
    # Set up the system parameters
    m = params.get('m', 1600.)
    g = params.get('g', 9.8)
    Cr = params.get('Cr', 0.01)
    Cd = params.get('Cd', 0.32)
    rho = params.get('rho', 1.3)
    A = params.get('A', 2.4)
    alpha = params.get(
        'alpha', [40, 25, 16, 12, 10])      # gear ratio / wheel radius

    # Define variables for vehicle state and inputs
    v = x[0]                           # vehicle velocity
    throttle = np.clip(u[0], 0, 1)     # vehicle throttle
    gear = u[1]                        # vehicle gear
    theta = u[2]                       # road slope

    # Force generated by the engine

    omega = alpha[int(gear)-1] * v      # engine angular speed
    F = alpha[int(gear)-1] * motor_torque(omega, params) * throttle

    # Disturbance forces
    #
    # The disturbance force Fd has three major components: Fg, the forces due
    # to gravity; Fr, the forces due to rolling friction; and Fa, the
    # aerodynamic drag.

    # Letting the slope of the road be \theta (theta), gravity gives the
    # force Fg = m g sin \theta.
    
    Fg = m * g * sin(theta)

    # A simple model of rolling friction is Fr = m g Cr sgn(v), where Cr is
    # the coefficient of rolling friction and sgn(v) is the sign of v (+/- 1) or
    # zero if v = 0.
    
    Fr  = m * g * Cr * sign(v)

    # The aerodynamic drag is proportional to the square of the speed: Fa =
    # 1/\rho Cd A |v| v, where \rho is the density of air, Cd is the
    # shape-dependent aerodynamic drag coefficient, and A is the frontal area
    # of the car.

    Fa = 1/2 * rho * Cd * A * abs(v) * v
    
    # Final acceleration on the car
    Fd = Fg + Fr + Fa
    dv = (F - Fd) / m
    
    return dv

# Engine model: motor_torque
#
# The force F is generated by the engine, whose torque is proportional to
# the rate of fuel injection, which is itself proportional to a control
# signal 0 <= u <= 1 that controls the throttle position. The torque also
# depends on engine speed omega.
    
def motor_torque(omega, params={}):
    # Set up the system parameters
    Tm = params.get('Tm', 190.)             # engine torque constant
    omega_m = params.get('omega_m', 420.)   # peak engine angular speed
    beta = params.get('beta', 0.4)          # peak engine rolloff

    return np.clip(Tm * (1 - beta * (omega/omega_m - 1)**2), 0, None)

# Define the input/output system for the vehicle
vehicle = ct.NonlinearIOSystem(
    vehicle_update, None, name='vehicle',
    inputs = ('u', 'gear', 'theta'), outputs = ('v'), states=('v'))

# Figure 1.11: A feedback system for controlling the speed of a vehicle. In
# this example, the speed of the vehicle is measured and compared to the
# desired speed.  The controller is a PI controller represented as a transfer
# function.  In the textbook, the simulations are done for LTI systems, but
# here we simulate the full nonlinear system.

# Construct a PI controller with rolloff, as a transfer function
Kp = 0.5                        # proportional gain
Ki = 0.1                        # integral gain
control_tf = ct.tf2io(
    ct.TransferFunction([Kp, Ki], [1, 0.01*Ki/Kp]),
    name='control', inputs='u', outputs='y')

# Construct the closed loop control system
# Inputs: vref, gear, theta
# Outputs: v (vehicle velocity)
cruise_tf = ct.InterconnectedSystem(
    (control_tf, vehicle), name='cruise',
    connections = (
        ('control.u', '-vehicle.v'),
        ('vehicle.u', 'control.y')),
    inplist = ('control.u', 'vehicle.gear', 'vehicle.theta'),
    inputs = ('vref', 'gear', 'theta'),
    outlist = ('vehicle.v', 'vehicle.u'),
    outputs = ('v', 'u'))

# Define the time and input vectors
T = np.linspace(0, 25, 101)
vref = 20 * np.ones(T.shape)
gear = 4 * np.ones(T.shape)
theta0 = np.zeros(T.shape)

# Now simulate the effect of a hill at t = 5 seconds
plt.figure()
plt.suptitle('Response to change in road slope')
vel_axes = plt.subplot(2, 1, 1)
inp_axes = plt.subplot(2, 1, 2)
theta_hill = np.array([
    0 if t <= 5 else
    4./180. * pi * (t-5) if t <= 6 else
    4./180. * pi for t in T])

for m in (1200, 1600, 2000):
    # Compute the equilibrium state for the system
    X0, U0 = ct.find_eqpt(
        cruise_tf, [0, vref[0]], [vref[0], gear[0], theta0[0]], 
        iu=[1, 2], y0=[vref[0], 0], iy=[0], params={'m':m})

    t, y = ct.input_output_response(
        cruise_tf, T, [vref, gear, theta_hill], X0, params={'m':m})

    # Plot the velocity
    plt.sca(vel_axes)
    plt.plot(t, y[0])

    # Plot the input
    plt.sca(inp_axes)
    plt.plot(t, y[1])

# Add labels to the plots
plt.sca(vel_axes)
plt.ylabel('Speed [m/s]')
plt.legend(['m = 1000 kg', 'm = 2000 kg', 'm = 3000 kg'], frameon=False)

plt.sca(inp_axes)
plt.ylabel('Throttle')
plt.xlabel('Time [s]')

# Figure 4.2: Torque curves for a typical car engine. The graph on the
# left shows the torque generated by the engine as a function of the
# angular velocity of the engine, while the curve on the right shows
# torque as a function of car speed for different gears.

plt.figure()
plt.suptitle('Torque curves for typical car engine')

# Figure 4.2a - single torque curve as function of omega
omega_range = np.linspace(0, 700, 701)
plt.subplot(2, 2, 1)
plt.plot(omega_range, [motor_torque(w) for w in omega_range])
plt.xlabel('Angular velocity $\omega$ [rad/s]')
plt.ylabel('Torque $T$ [Nm]')
plt.grid(True, linestyle='dotted')

# Figure 4.2b - torque curves in different gears, as function of velocity
plt.subplot(2, 2, 2)
v_range = np.linspace(0, 70, 71)
alpha = [40, 25, 16, 12, 10]
for gear in range(5):
    omega_range = alpha[gear] * v_range
    plt.plot(v_range, [motor_torque(w) for w in omega_range],
             color='blue', linestyle='solid')

# Set up the axes and style
plt.axis([0, 70, 100, 200])
plt.grid(True, linestyle='dotted')

# Add labels
plt.text(11.5, 120, '$n$=1')
plt.text(24, 120, '$n$=2')
plt.text(42.5, 120, '$n$=3')
plt.text(58.5, 120, '$n$=4')
plt.text(58.5, 185, '$n$=5')
plt.xlabel('Velocity $v$ [m/s]')
plt.ylabel('Torque $T$ [Nm]')

plt.show(block=False)

# Figure 4.3: Car with cruise control encountering a sloping road

# PI controller model: control_pi()
#
# We add to this model a feedback controller that attempts to regulate the
# speed of the car in the presence of disturbances. We shall use a
# proportional-integral controller

def pi_update(t, x, u, params={}):
    # Get the controller parameters that we need
    ki = params.get('ki', 0.1)
    kaw = params.get('kaw', 2)  # anti-windup gain

    # Assign variables for inputs and states (for readability)
    v = u[0]                    # current velocity
    vref = u[1]                 # reference velocity
    z = x[0]                    # integrated error

    # Compute the nominal controller output (needed for anti-windup)
    u_a = pi_output(t, x, u, params)

    # Compute anti-windup compensation (scale by ki to account for structure)
    u_aw = kaw/ki * (np.clip(u_a, 0, 1) - u_a) if ki != 0 else 0

    # State is the integrated error, minus anti-windup compensation
    return (vref - v) + u_aw

def pi_output(t, x, u, params={}):
    # Get the controller parameters that we need
    kp = params.get('kp', 0.5)
    ki = params.get('ki', 0.1)

    # Assign variables for inputs and states (for readability)
    v = u[0]                    # current velocity
    vref = u[1]                 # reference velocity
    z = x[0]                    # integrated error

    # PI controller
    return kp * (vref - v) + ki * z

control_pi = ct.NonlinearIOSystem(
    pi_update, pi_output, name='control',
    inputs = ['v', 'vref'], outputs = ['u'], states = ['z'],
    params = {'kp':0.5, 'ki':0.1})

# Create the closed loop system
cruise_pi = ct.InterconnectedSystem(
    (vehicle, control_pi), name='cruise',
    connections=(
        ('vehicle.u', 'control.u'),
        ('control.v', 'vehicle.v')),
    inplist=('control.vref', 'vehicle.gear', 'vehicle.theta'),
    outlist=('control.u', 'vehicle.v'), outputs=['u', 'v'])

# Figure 4.3b shows the response of the closed loop system.  The figure shows
# that even if the hill is so steep that the throttle changes from 0.17 to
# almost full throttle, the largest speed error is less than 1 m/s, and the
# desired velocity is recovered after 20 s.

# Define a function for creating a "standard" cruise control plot
def cruise_plot(sys, t, y, t_hill=5, vref=20, antiwindup=False,
                linetype='b-', subplots=[None, None]):
    # Figure out the plot bounds and indices
    v_min = vref-1.2; v_max = vref+0.5; v_ind = sys.find_output('v')
    u_min = 0; u_max = 2 if antiwindup else 1; u_ind = sys.find_output('u')

    # Make sure the upper and lower bounds on v are OK
    while max(y[v_ind]) > v_max: v_max += 1
    while min(y[v_ind]) < v_min: v_min -= 1

    # Create arrays for return values
    subplot_axes = list(subplots)

    # Velocity profile
    if subplot_axes[0] is None:
        subplot_axes[0] = plt.subplot(2, 1, 1)
    else:
        plt.sca(subplots[0])
    plt.plot(t, y[v_ind], linetype)
    plt.plot(t, vref*np.ones(t.shape), 'k-')
    plt.plot([t_hill, t_hill], [v_min, v_max], 'k--')
    plt.axis([0, t[-1], v_min, v_max])
    plt.xlabel('Time $t$ [s]')
    plt.ylabel('Velocity $v$ [m/s]')

    # Commanded input profile
    if subplot_axes[1] is None:
        subplot_axes[1] = plt.subplot(2, 1, 2)
    else:
        plt.sca(subplots[1])
    plt.plot(t, y[u_ind], 'r--' if antiwindup else linetype)
    plt.plot([t_hill, t_hill], [u_min, u_max], 'k--')
    plt.axis([0, t[-1], u_min, u_max])
    plt.xlabel('Time $t$ [s]')
    plt.ylabel('Throttle $u$')

    # Applied input profile
    if antiwindup:
        # TODO: plot the actual signal from the process?
        plt.plot(t, np.clip(y[u_ind], 0, 1), linetype)
        plt.legend(['Commanded', 'Applied'], frameon=False)

    return subplot_axes

# Define the time and input vectors
T = np.linspace(0, 30, 101)
vref = 20 * np.ones(T.shape)
gear = 4 * np.ones(T.shape)
theta0 = np.zeros(T.shape)

# Compute the equilibrium throttle setting for the desired speed (solve for x
# and u given the gear, slope, and desired output velocity)
X0, U0, Y0 = ct.find_eqpt(
    cruise_pi, [vref[0], 0], [vref[0], gear[0], theta0[0]],
    y0=[0, vref[0]], iu=[1, 2], iy=[1], return_y=True)

# Now simulate the effect of a hill at t = 5 seconds
plt.figure()
plt.suptitle('Car with cruise control encountering sloping road')
theta_hill = [
    0 if t <= 5 else
    4./180. * pi * (t-5) if t <= 6 else
    4./180. * pi for t in T]
t, y = ct.input_output_response(cruise_pi, T, [vref, gear, theta_hill], X0)
cruise_plot(cruise_pi, t, y)

#
# Example 7.8: State space feedback with integral action
#

# State space controller model: control_sf_ia()
#
# Construct a state space controller with integral action, linearized around
# an equilibrium point.  The controller is constructed around the equilibrium
# point (x_d, u_d) and includes both feedforward and feedback compensation.
#
# Controller inputs: (x, y, r)    system states, system output, reference
# Controller state:  z            integrated error (y - r)
# Controller output: u            state feedback control
#
# Note: to make the structure of the controller more clear, we implement this
# as a "nonlinear" input/output module, even though the actual input/output
# system is linear.  This also allows the use of parameters to set the
# operating point and gains for the controller.

def sf_update(t, z, u, params={}):
    y, r = u[1], u[2]
    return y - r

def sf_output(t, z, u, params={}):
    # Get the controller parameters that we need
    K = params.get('K', 0)
    ki = params.get('ki', 0)
    kf = params.get('kf', 0)
    xd = params.get('xd', 0)
    yd = params.get('yd', 0)
    ud = params.get('ud', 0)

    # Get the system state and reference input
    x, y, r = u[0], u[1], u[2]

    return ud - K * (x - xd) - ki * z + kf * (r - yd)

# Create the input/output system for the controller
control_sf = ct.NonlinearIOSystem(
    sf_update, sf_output, name='control',
    inputs=('x', 'y', 'r'),
    outputs=('u'),
    states=('z'))

# Create the closed loop system for the state space controller
cruise_sf = ct.InterconnectedSystem(
    (vehicle, control_sf), name='cruise',
    connections=(
        ('vehicle.u', 'control.u'),
        ('control.x', 'vehicle.v'),
        ('control.y', 'vehicle.v')),
    inplist=('control.r', 'vehicle.gear', 'vehicle.theta'),
    outlist=('control.u', 'vehicle.v'), outputs=['u', 'v'])

# Compute the linearization of the dynamics around the equilibrium point

# Y0 represents the steady state with PI control => we can use it to
# identify the steady state velocity and required throttle setting.
xd = Y0[1]
ud = Y0[0]
yd = Y0[1]

# Compute the linearized system at the eq pt
cruise_linearized = ct.linearize(vehicle, xd, [ud, gear[0], 0])

# Construct the gain matrices for the system
A, B, C = cruise_linearized.A, cruise_linearized.B[0, 0], cruise_linearized.C
K = 0.5
kf = -1 / (C * np.linalg.inv(A - B * K) * B)

# Response of the system with no integral feedback term
plt.figure()
plt.suptitle('Cruise control with proportional and PI control')
theta_hill = [
    0 if t <= 8 else
    4./180. * pi * (t-8) if t <= 9 else
    4./180. * pi for t in T]
t, y = ct.input_output_response(
    cruise_sf, T, [vref, gear, theta_hill], [X0[0], 0],
    params={'K':K, 'kf':kf, 'ki':0.0, 'kf':kf, 'xd':xd, 'ud':ud, 'yd':yd})
subplots = cruise_plot(cruise_sf, t, y, t_hill=8, linetype='b--')

# Response of the system with state feedback + integral action
t, y = ct.input_output_response(
    cruise_sf, T, [vref, gear, theta_hill], [X0[0], 0],
    params={'K':K, 'kf':kf, 'ki':0.1, 'kf':kf, 'xd':xd, 'ud':ud, 'yd':yd})
cruise_plot(cruise_sf, t, y, t_hill=8, linetype='b-', subplots=subplots)

# Add a legend
plt.legend(['Proportional', 'PI control'], frameon=False)

# Example 11.5: simulate the effect of a (steeper) hill at t = 5 seconds
#
# The windup effect occurs when a car encounters a hill that is so steep (6
# deg) that the throttle saturates when the cruise controller attempts to
# maintain speed.

plt.figure()
plt.suptitle('Cruise control with integrator windup')
T = np.linspace(0, 70, 101)
vref = 20 * np.ones(T.shape)
theta_hill = [
    0 if t <= 5 else
    6./180. * pi * (t-5) if t <= 6 else
    6./180. * pi for t in T]
t, y = ct.input_output_response(
    cruise_pi, T, [vref, gear, theta_hill], X0,
    params={'kaw':0})
cruise_plot(cruise_pi, t, y, antiwindup=True)

# Example 11.6: add anti-windup compensation
#
# Anti-windup can be applied to the system to improve the response. Because of
# the feedback from the actuator model, the output of the integrator is
# quickly reset to a value such that the controller output is at the
# saturation limit.

plt.figure()
plt.suptitle('Cruise control with integrator anti-windup protection')
t, y = ct.input_output_response(
    cruise_pi, T, [vref, gear, theta_hill], X0,
    params={'kaw':2.})
cruise_plot(cruise_pi, t, y, antiwindup=True)

# If running as a standalone program, show plots and wait before closing
import os
if __name__ == '__main__' and 'PYCONTROL_TEST_EXAMPLES' not in os.environ:
    plt.show()
else:
    plt.show(block=False)

Notes

1. The environment variable PYCONTROL_TEST_EXAMPLES is used for testing to turn off plotting of the outputs.