LQR control design for vertical takeoff and landing aircraft

This script demonstrates the use of the python-control package for analysis and design of a controller for a vectored thrust aircraft model that is used as a running example through the text Feedback Systems by Astrom and Murray. This example makes use of MATLAB compatible commands.

Code

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# pvtol_lqr.m - LQR design for vectored thrust aircraft
# RMM, 14 Jan 03
#
# This file works through an LQR based design problem, using the
# planar vertical takeoff and landing (PVTOL) aircraft example from
# Astrom and Murray, Chapter 5.  It is intended to demonstrate the
# basic functionality of the python-control package.
#

import os
import numpy as np
import matplotlib.pyplot as plt  # MATLAB plotting functions
from control.matlab import *  # MATLAB-like functions

#
# System dynamics
#
# These are the dynamics for the PVTOL system, written in state space
# form.
#

# System parameters
m = 4       # mass of aircraft
J = 0.0475  # inertia around pitch axis
r = 0.25    # distance to center of force
g = 9.8     # gravitational constant
c = 0.05    # damping factor (estimated)

# State space dynamics
xe = [0, 0, 0, 0, 0, 0]  # equilibrium point of interest
ue = [0, m*g]  # (note these are lists, not matrices)

# TODO: The following objects need converting from np.matrix to np.array
# This will involve re-working the subsequent equations as the shapes
# See below.

# Dynamics matrix (use matrix type so that * works for multiplication)
A = np.matrix(
    [[0, 0, 0, 1, 0, 0],
     [0, 0, 0, 0, 1, 0],
     [0, 0, 0, 0, 0, 1],
     [0, 0, (-ue[0]*np.sin(xe[2]) - ue[1]*np.cos(xe[2]))/m, -c/m, 0, 0],
     [0, 0, (ue[0]*np.cos(xe[2]) - ue[1]*np.sin(xe[2]))/m, 0, -c/m, 0],
     [0, 0, 0, 0, 0, 0]]
)

# Input matrix
B = np.matrix(
    [[0, 0], [0, 0], [0, 0],
     [np.cos(xe[2])/m, -np.sin(xe[2])/m],
     [np.sin(xe[2])/m, np.cos(xe[2])/m],
     [r/J, 0]]
)

# Output matrix 
C = np.matrix([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]])
D = np.matrix([[0, 0], [0, 0]])

#
# Construct inputs and outputs corresponding to steps in xy position
#
# The vectors xd and yd correspond to the states that are the desired
# equilibrium states for the system.  The matrices Cx and Cy are the 
# corresponding outputs.
#
# The way these vectors are used is to compute the closed loop system
# dynamics as
#
#   xdot = Ax + B u  =>  xdot = (A-BK)x + K xd
#      u = -K(x - xd)       y = Cx
#
# The closed loop dynamics can be simulated using the "step" command, 
# with K*xd as the input vector (assumes that the "input" is unit size,
# so that xd corresponds to the desired steady state.
#

xd = np.matrix([[1], [0], [0], [0], [0], [0]])
yd = np.matrix([[0], [1], [0], [0], [0], [0]])

#
# Extract the relevant dynamics for use with SISO library
#
# The current python-control library only supports SISO transfer
# functions, so we have to modify some parts of the original MATLAB
# code to extract out SISO systems.  To do this, we define the 'lat' and
# 'alt' index vectors to consist of the states that are are relevant
# to the lateral (x) and vertical (y) dynamics.
#

# Indices for the parts of the state that we want
lat = (0, 2, 3, 5)
alt = (1, 4)

# Decoupled dynamics
Ax = (A[lat, :])[:, lat]  # ! not sure why I have to do it this way
Bx = B[lat, 0]
Cx = C[0, lat]
Dx = D[0, 0]

Ay = (A[alt, :])[:, alt]  # ! not sure why I have to do it this way
By = B[alt, 1]
Cy = C[1, alt]
Dy = D[1, 1]

# Label the plot
plt.clf()
plt.suptitle("LQR controllers for vectored thrust aircraft (pvtol-lqr)")

#
# LQR design
#

# Start with a diagonal weighting
Qx1 = np.diag([1, 1, 1, 1, 1, 1])
Qu1a = np.diag([1, 1])
K, X, E = lqr(A, B, Qx1, Qu1a)
K1a = np.matrix(K)

# Close the loop: xdot = Ax - B K (x-xd)
# Note: python-control requires we do this 1 input at a time
# H1a = ss(A-B*K1a, B*K1a*concatenate((xd, yd), axis=1), C, D);
# (T, Y) = step(H1a, T=np.linspace(0,10,100));

# TODO: The following equations will need modifying when converting from np.matrix to np.array
# because the results and even intermediate calculations will be different with numpy arrays
# For example:
# Bx = B[lat, 0]
# Will need to be changed to:
# Bx = B[lat, 0].reshape(-1, 1)
# (if we want it to have the same shape as before)

# For reference, here is a list of the correct shapes of these objects:
# A: (6, 6)
# B: (6, 2)
# C: (2, 6)
# D: (2, 2)
# xd: (6, 1)
# yd: (6, 1)
# Ax: (4, 4)
# Bx: (4, 1)
# Cx: (1, 4)
# Dx: ()
# Ay: (2, 2)
# By: (2, 1)
# Cy: (1, 2)

# Step response for the first input
H1ax = ss(Ax - Bx*K1a[0, lat], Bx*K1a[0, lat]*xd[lat, :], Cx, Dx)
Yx, Tx = step(H1ax, T=np.linspace(0, 10, 100))

# Step response for the second input
H1ay = ss(Ay - By*K1a[1, alt], By*K1a[1, alt]*yd[alt, :], Cy, Dy)
Yy, Ty = step(H1ay, T=np.linspace(0, 10, 100))

plt.subplot(221)
plt.title("Identity weights")
# plt.plot(T, Y[:,1, 1], '-', T, Y[:,2, 2], '--')
plt.plot(Tx.T, Yx.T, '-', Ty.T, Yy.T, '--')
plt.plot([0, 10], [1, 1], 'k-')

plt.axis([0, 10, -0.1, 1.4])
plt.ylabel('position')
plt.legend(('x', 'y'), loc='lower right')

# Look at different input weightings
Qu1a = np.diag([1, 1])
K1a, X, E = lqr(A, B, Qx1, Qu1a)
H1ax = ss(Ax - Bx*K1a[0, lat], Bx*K1a[0, lat]*xd[lat, :], Cx, Dx)

Qu1b = (40 ** 2)*np.diag([1, 1])
K1b, X, E = lqr(A, B, Qx1, Qu1b)
H1bx = ss(Ax - Bx*K1b[0, lat], Bx*K1b[0, lat]*xd[lat, :], Cx, Dx)

Qu1c = (200 ** 2)*np.diag([1, 1])
K1c, X, E = lqr(A, B, Qx1, Qu1c)
H1cx = ss(Ax - Bx*K1c[0, lat], Bx*K1c[0, lat]*xd[lat, :], Cx, Dx)

[Y1, T1] = step(H1ax, T=np.linspace(0, 10, 100))
[Y2, T2] = step(H1bx, T=np.linspace(0, 10, 100))
[Y3, T3] = step(H1cx, T=np.linspace(0, 10, 100))

plt.subplot(222)
plt.title("Effect of input weights")
plt.plot(T1.T, Y1.T, 'b-')
plt.plot(T2.T, Y2.T, 'b-')
plt.plot(T3.T, Y3.T, 'b-')
plt.plot([0, 10], [1, 1], 'k-')

plt.axis([0, 10, -0.1, 1.4])

# arcarrow([1.3, 0.8], [5, 0.45], -6)
plt.text(5.3, 0.4, 'rho')

# Output weighting - change Qx to use outputs
Qx2 = C.T*C
Qu2 = 0.1*np.diag([1, 1])
K, X, E = lqr(A, B, Qx2, Qu2)
K2 = np.matrix(K)

H2x = ss(Ax - Bx*K2[0, lat], Bx*K2[0, lat]*xd[lat, :], Cx, Dx)
H2y = ss(Ay - By*K2[1, alt], By*K2[1, alt]*yd[alt, :], Cy, Dy)

plt.subplot(223)
plt.title("Output weighting")
[Y2x, T2x] = step(H2x, T=np.linspace(0, 10, 100))
[Y2y, T2y] = step(H2y, T=np.linspace(0, 10, 100))
plt.plot(T2x.T, Y2x.T, T2y.T, Y2y.T)
plt.ylabel('position')
plt.xlabel('time')
plt.ylabel('position')
plt.legend(('x', 'y'), loc='lower right')

#
# Physically motivated weighting
#
# Shoot for 1 cm error in x, 10 cm error in y.  Try to keep the angle
# less than 5 degrees in making the adjustments.  Penalize side forces
# due to loss in efficiency.
#

Qx3 = np.diag([100, 10, 2*np.pi/5, 0, 0, 0])
Qu3 = 0.1*np.diag([1, 10])
(K, X, E) = lqr(A, B, Qx3, Qu3)
K3 = np.matrix(K)

H3x = ss(Ax - Bx*K3[0, lat], Bx*K3[0, lat]*xd[lat, :], Cx, Dx)
H3y = ss(Ay - By*K3[1, alt], By*K3[1, alt]*yd[alt, :], Cy, Dy)
plt.subplot(224)
# step(H3x, H3y, 10)
[Y3x, T3x] = step(H3x, T=np.linspace(0, 10, 100))
[Y3y, T3y] = step(H3y, T=np.linspace(0, 10, 100))
plt.plot(T3x.T, Y3x.T, T3y.T, Y3y.T)
plt.title("Physically motivated weights")
plt.xlabel('time')
plt.legend(('x', 'y'), loc='lower right')

if 'PYCONTROL_TEST_EXAMPLES' not in os.environ:
    plt.show()

Notes

1. The environment variable PYCONTROL_TEST_EXAMPLES is used for testing to turn off plotting of the outputs.