control.LinearICSystem¶
- class control.LinearICSystem(io_sys, ss_sys=None)¶
Bases:
control.iosys.InterconnectedSystem
,control.iosys.LinearIOSystem
Interconnection of a set of linear input/output systems.
This class is used to implement a system that is an interconnection of linear input/output systems. It has all of the structure of an
InterconnectedSystem
, but also maintains the requirement elements ofLinearIOSystem
, including theStateSpace
class structure, allowing it to be passed to functions that expect aStateSpace
system.This class is usually generated using
interconnect()
and not called directlyMethods
Append a second model to the present model.
Check for unused subsystem inputs and outputs
Make a copy of an input/output system.
Natural frequency, damping ratio of system poles
Return the zero-frequency gain
Compute the dynamics of a differential or difference equation.
Feedback interconnection between two input/output systems
Find the index for an input given its name (None if not found)
Find the index for an output given its name (None if not found)
Find the index for a state given its name (None if not found)
(deprecated) Evaluate transfer function at complex frequencies.
Evaluate the linear time-invariant system at an array of angular frequencies.
Evaluate system's transfer function at complex frequency using Laub's or Horner's method.
Check to see if a system is a continuous-time system
Check to see if a system is a discrete-time system
Check to see if a system is single input, single output
Return the Linear Fractional Transformation.
Linearize an input/output system at a given state and input.
Calculate a minimal realization, removes unobservable and uncontrollable states
Compute the output of the system
Compute the poles of a state space system.
Return a list of a list of
scipy.signal.lti
objects.Convert a continuous time system to discrete time
Set the connection map for an interconnected I/O system.
Set the input map for an interconnected I/O system.
Set the number/names of the system inputs.
Set the output map for an interconnected I/O system.
Set the number/names of the system outputs.
Set the number/names of the system states.
Evaluate system's transfer function at complex frequency using Laub's method from Slycot.
Find unused subsystem inputs and outputs
Compute the zeros of a state space system.
- __add__(sys2)¶
Add two input/output systems (parallel interconnection)
- __call__(x, squeeze=None, warn_infinite=True)¶
Evaluate system’s transfer function at complex frequency.
Returns the complex frequency response sys(x) where x is s for continuous-time systems and z for discrete-time systems.
To evaluate at a frequency omega in radians per second, enter
x = omega * 1j
, for continuous-time systems, orx = exp(1j * omega * dt)
for discrete-time systems. Or useStateSpace.frequency_response()
.- Parameters
x (complex or complex 1D array_like) – Complex frequencies
squeeze (bool, optional) – If squeeze=True, remove single-dimensional entries from the shape of the output even if the system is not SISO. If squeeze=False, keep all indices (output, input and, if omega is array_like, frequency) even if the system is SISO. The default value can be set using config.defaults[‘control.squeeze_frequency_response’].
warn_infinite (bool, optional) – If set to False, don’t warn if frequency response is infinite.
- Returns
fresp – The frequency response of the system. If the system is SISO and squeeze is not True, the shape of the array matches the shape of omega. If the system is not SISO or squeeze is False, the first two dimensions of the array are indices for the output and input and the remaining dimensions match omega. If
squeeze
is True then single-dimensional axes are removed.- Return type
complex ndarray
- __div__(other)¶
Divide two LTI systems.
- __getitem__(indices)¶
Array style access
- __mul__(sys1)¶
Multiply two input/output systems (series interconnection)
- __neg__()¶
Negate an input/output systems (rescale)
- __radd__(sys2)¶
Parallel addition of input/output system to a compatible object.
- __rdiv__(other)¶
Right divide two LTI systems.
- __rmul__(sys2)¶
Pre-multiply an input/output systems by a scalar/matrix
- __rsub__(sys2)¶
Parallel subtraction of I/O system to a compatible object.
- __sub__(sys2)¶
Subtract two input/output systems (parallel interconnection)
- append(other)¶
Append a second model to the present model.
The second model is converted to state-space if necessary, inputs and outputs are appended and their order is preserved
- check_unused_signals(ignore_inputs=None, ignore_outputs=None)¶
Check for unused subsystem inputs and outputs
If any unused inputs or outputs are found, emit a warning.
- Parameters
ignore_inputs (list of input-spec) –
- Subsystem inputs known to be unused. input-spec can be any of:
’sig’, ‘sys.sig’, (isys, isig), (‘sys’, isig)
If the ‘sig’ form is used, all subsystem inputs with that name are considered ignored.
ignore_outputs (list of output-spec) –
- Subsystem outputs known to be unused. output-spec can be any of:
’sig’, ‘sys.sig’, (isys, isig), (‘sys’, isig)
If the ‘sig’ form is used, all subsystem outputs with that name are considered ignored.
- copy(newname=None)¶
Make a copy of an input/output system.
- damp()¶
Natural frequency, damping ratio of system poles
- Returns
wn (array) – Natural frequencies for each system pole
zeta (array) – Damping ratio for each system pole
poles (array) – Array of system poles
- dcgain(warn_infinite=False)¶
Return the zero-frequency gain
The zero-frequency gain of a continuous-time state-space system is given by:
and of a discrete-time state-space system by:
- Parameters
warn_infinite (bool, optional) – By default, don’t issue a warning message if the zero-frequency gain is infinite. Setting warn_infinite to generate the warning message.
- Returns
gain – Array or scalar value for SISO systems, depending on config.defaults[‘control.squeeze_frequency_response’]. The value of the array elements or the scalar is either the zero-frequency (or DC) gain, or inf, if the frequency response is singular.
For real valued systems, the empty imaginary part of the complex zero-frequency response is discarded and a real array or scalar is returned.
- Return type
(noutputs, ninputs) ndarray or scalar
- dynamics(t, x, u)¶
Compute the dynamics of a differential or difference equation.
Given time t, input u and state x, returns the value of the right hand side of the dynamical system. If the system is continuous, returns the time derivative
dx/dt = f(t, x, u)
where f is the system’s (possibly nonlinear) dynamics function. If the system is discrete-time, returns the next value of x:
x[t+dt] = f(t, x[t], u[t])
Where t is a scalar.
The inputs x and u must be of the correct length.
- Parameters
t (float) – the time at which to evaluate
x (array_like) – current state
u (array_like) – input
- Returns
dx/dt or x[t+dt]
- Return type
ndarray
- feedback(other=1, sign=- 1, params={})¶
Feedback interconnection between two input/output systems
- Parameters
sys1 (InputOutputSystem) – The primary process.
sys2 (InputOutputSystem) – The feedback process (often a feedback controller).
sign (scalar, optional) – The sign of feedback. sign = -1 indicates negative feedback, and sign = 1 indicates positive feedback. sign is an optional argument; it assumes a value of -1 if not specified.
- Returns
out
- Return type
- Raises
ValueError – if the inputs, outputs, or timebases of the systems are incompatible.
- find_input(name)¶
Find the index for an input given its name (None if not found)
- find_output(name)¶
Find the index for an output given its name (None if not found)
- find_state(name)¶
Find the index for a state given its name (None if not found)
- freqresp(omega)¶
(deprecated) Evaluate transfer function at complex frequencies.
- frequency_response(omega, squeeze=None)¶
Evaluate the linear time-invariant system at an array of angular frequencies.
Reports the frequency response of the system,
G(j*omega) = mag*exp(j*phase)
for continuous time systems. For discrete time systems, the response is evaluated around the unit circle such that
G(exp(j*omega*dt)) = mag*exp(j*phase).
In general the system may be multiple input, multiple output (MIMO), where m = self.ninputs number of inputs and p = self.noutputs number of outputs.
- Parameters
omega (float or 1D array_like) – A list, tuple, array, or scalar value of frequencies in radians/sec at which the system will be evaluated.
squeeze (bool, optional) – If squeeze=True, remove single-dimensional entries from the shape of the output even if the system is not SISO. If squeeze=False, keep all indices (output, input and, if omega is array_like, frequency) even if the system is SISO. The default value can be set using config.defaults[‘control.squeeze_frequency_response’].
- Returns
mag (ndarray) – The magnitude (absolute value, not dB or log10) of the system frequency response. If the system is SISO and squeeze is not True, the array is 1D, indexed by frequency. If the system is not SISO or squeeze is False, the array is 3D, indexed by the output, input, and frequency. If
squeeze
is True then single-dimensional axes are removed.phase (ndarray) – The wrapped phase in radians of the system frequency response.
omega (ndarray) – The (sorted) frequencies at which the response was evaluated.
- horner(x, warn_infinite=True)¶
Evaluate system’s transfer function at complex frequency using Laub’s or Horner’s method.
Evaluates sys(x) where x is s for continuous-time systems and z for discrete-time systems.
Expects inputs and outputs to be formatted correctly. Use
sys(x)
for a more user-friendly interface.- Parameters
x (complex array_like or complex) – Complex frequencies
- Returns
output – Frequency response
- Return type
(self.noutputs, self.ninputs, len(x)) complex ndarray
Notes
Attempts to use Laub’s method from Slycot library, with a fall-back to python code.
- property inputs¶
Deprecated attribute; use
ninputs
instead.The
input
attribute was used to store the number of system inputs. It is no longer used. If you need access to the number of inputs for an LTI system, useninputs
.
- isctime(strict=False)¶
Check to see if a system is a continuous-time system
- Parameters
sys (LTI system) – System to be checked
strict (bool, optional) – If strict is True, make sure that timebase is not None. Default is False.
- isdtime(strict=False)¶
Check to see if a system is a discrete-time system
- Parameters
strict (bool, optional) – If strict is True, make sure that timebase is not None. Default is False.
- issiso()¶
Check to see if a system is single input, single output
- lft(other, nu=- 1, ny=- 1)¶
Return the Linear Fractional Transformation.
A definition of the LFT operator can be found in Appendix A.7, page 512 in the 2nd Edition, Multivariable Feedback Control by Sigurd Skogestad.
An alternative definition can be found here: https://www.mathworks.com/help/control/ref/lft.html
- Parameters
other (LTI) – The lower LTI system
ny (int, optional) – Dimension of (plant) measurement output.
nu (int, optional) – Dimension of (plant) control input.
- linearize(x0, u0, t=0, params={}, eps=1e-06, name=None, copy=False, **kwargs)¶
Linearize an input/output system at a given state and input.
Return the linearization of an input/output system at a given state and input value as a StateSpace system. See
linearize()
for complete documentation.
- minreal(tol=0.0)¶
Calculate a minimal realization, removes unobservable and uncontrollable states
- output(t, x, u)¶
Compute the output of the system
Given time t, input u and state x, returns the output of the system:
y = g(t, x, u)
The inputs x and u must be of the correct length.
- Parameters
t (float) – the time at which to evaluate
x (array_like) – current state
u (array_like) – input
- Returns
y
- Return type
ndarray
- property outputs¶
Deprecated attribute; use
noutputs
instead.The
output
attribute was used to store the number of system outputs. It is no longer used. If you need access to the number of outputs for an LTI system, usenoutputs
.
- pole()¶
Compute the poles of a state space system.
- returnScipySignalLTI(strict=True)¶
Return a list of a list of
scipy.signal.lti
objects.For instance,
>>> out = ssobject.returnScipySignalLTI() >>> out[3][5]
is a
scipy.signal.lti
object corresponding to the transfer function from the 6th input to the 4th output.- Parameters
strict (bool, optional) –
- True (default):
The timebase ssobject.dt cannot be None; it must be continuous (0) or discrete (True or > 0).
- False:
If ssobject.dt is None, continuous time
scipy.signal.lti
objects are returned.
- Returns
out – continuous time (inheriting from
scipy.signal.lti
) or discrete time (inheriting fromscipy.signal.dlti
) SISO objects- Return type
list of list of
scipy.signal.StateSpace
- sample(Ts, method='zoh', alpha=None, prewarp_frequency=None)¶
Convert a continuous time system to discrete time
Creates a discrete-time system from a continuous-time system by sampling. Multiple methods of conversion are supported.
- Parameters
Ts (float) – Sampling period
method ({"gbt", "bilinear", "euler", "backward_diff", "zoh"}) –
Which method to use:
gbt: generalized bilinear transformation
bilinear: Tustin’s approximation (“gbt” with alpha=0.5)
euler: Euler (or forward differencing) method (“gbt” with alpha=0)
backward_diff: Backwards differencing (“gbt” with alpha=1.0)
zoh: zero-order hold (default)
alpha (float within [0, 1]) – The generalized bilinear transformation weighting parameter, which should only be specified with method=”gbt”, and is ignored otherwise
prewarp_frequency (float within [0, infinity)) – The frequency [rad/s] at which to match with the input continuous- time system’s magnitude and phase (the gain=1 crossover frequency, for example). Should only be specified with method=’bilinear’ or ‘gbt’ with alpha=0.5 and ignored otherwise.
- Returns
sysd – Discrete time system, with sampling rate Ts
- Return type
Notes
Uses
scipy.signal.cont2discrete()
Examples
>>> sys = StateSpace(0, 1, 1, 0) >>> sysd = sys.sample(0.5, method='bilinear')
- set_connect_map(connect_map)¶
Set the connection map for an interconnected I/O system.
- Parameters
connect_map (2D array) – Specify the matrix that will be used to multiply the vector of subsystem outputs to obtain the vector of subsystem inputs.
- set_input_map(input_map)¶
Set the input map for an interconnected I/O system.
- Parameters
input_map (2D array) – Specify the matrix that will be used to multiply the vector of system inputs to obtain the vector of subsystem inputs. These values are added to the inputs specified in the connection map.
- set_inputs(inputs, prefix='u')¶
Set the number/names of the system inputs.
- Parameters
inputs (int, list of str, or None) – Description of the system inputs. This can be given as an integer count or as a list of strings that name the individual signals. If an integer count is specified, the names of the signal will be of the form u[i] (where the prefix u can be changed using the optional prefix parameter).
prefix (string, optional) – If inputs is an integer, create the names of the states using the given prefix (default = ‘u’). The names of the input will be of the form prefix[i].
- set_output_map(output_map)¶
Set the output map for an interconnected I/O system.
- Parameters
output_map (2D array) – Specify the matrix that will be used to multiply the vector of subsystem outputs to obtain the vector of system outputs.
- set_outputs(outputs, prefix='y')¶
Set the number/names of the system outputs.
- Parameters
outputs (int, list of str, or None) – Description of the system outputs. This can be given as an integer count or as a list of strings that name the individual signals. If an integer count is specified, the names of the signal will be of the form u[i] (where the prefix u can be changed using the optional prefix parameter).
prefix (string, optional) – If outputs is an integer, create the names of the states using the given prefix (default = ‘y’). The names of the input will be of the form prefix[i].
- set_states(states, prefix='x')¶
Set the number/names of the system states.
- Parameters
states (int, list of str, or None) – Description of the system states. This can be given as an integer count or as a list of strings that name the individual signals. If an integer count is specified, the names of the signal will be of the form u[i] (where the prefix u can be changed using the optional prefix parameter).
prefix (string, optional) – If states is an integer, create the names of the states using the given prefix (default = ‘x’). The names of the input will be of the form prefix[i].
- slycot_laub(x)¶
Evaluate system’s transfer function at complex frequency using Laub’s method from Slycot.
Expects inputs and outputs to be formatted correctly. Use
sys(x)
for a more user-friendly interface.- Parameters
x (complex array_like or complex) – Complex frequency
- Returns
output – Frequency response
- Return type
(number_outputs, number_inputs, len(x)) complex ndarray
- property states¶
Deprecated attribute; use
nstates
instead.The
state
attribute was used to store the number of states for : a state space system. It is no longer used. If you need to access the number of states, usenstates
.
- unused_signals()¶
Find unused subsystem inputs and outputs
- Returns
unused_inputs (dict) – A mapping from tuple of indices (isys, isig) to string ‘{sys}.{sig}’, for all unused subsystem inputs.
unused_outputs (dict) – A mapping from tuple of indices (isys, isig) to string ‘{sys}.{sig}’, for all unused subsystem outputs.
- zero()¶
Compute the zeros of a state space system.