control.optimal.OptimalControlProblem¶

class
control.optimal.
OptimalControlProblem
(sys, timepts, integral_cost, trajectory_constraints=[], terminal_cost=None, terminal_constraints=[], initial_guess=None, basis=None, log=False, **kwargs)¶ Description of a finite horizon, optimal control problem
The OptimalControlProblem class holds all of the information required to specify and optimal control problem: the system dynamics, cost function, and constraints. As much as possible, the information used to specify an optimal control problem matches the notation and terminology of the SciPy optimize.minimize module, with the hope that this makes it easier to remember how to describe a problem.
Notes
This class sets up an optimization over the inputs at each point in time, using the integral and terminal costs as well as the trajectory and terminal constraints. The compute_trajectory method sets up an optimization problem that can be solved using
scipy.optimize.minimize()
.The _cost_function method takes the information computes the cost of the trajectory generated by the proposed input. It does this by calling a userdefined function for the integral_cost given the current states and inputs at each point along the trajetory and then adding the value of a userdefined terminal cost at the final pint in the trajectory.
The _constraint_function method evaluates the constraint functions along the trajectory generated by the proposed input. As in the case of the cost function, the constraints are evaluated at the state and input along each point on the trjectory. This information is compared against the constraint upper and lower bounds. The constraint function is processed in the class initializer, so that it only needs to be computed once.
If basis is specified, then the optimization is done over coefficients of the basis elements. Otherwise, the optimization is performed over the values of the input at the specified times (using linear interpolation for continuous systems).

__init__
(sys, timepts, integral_cost, trajectory_constraints=[], terminal_cost=None, terminal_constraints=[], initial_guess=None, basis=None, log=False, **kwargs)¶ Set up an optimal control problem
To describe an optimal control problem we need an input/output system, a time horizon, a cost function, and (optionally) a set of constraints on the state and/or input, either along the trajectory and at the terminal time.
 Parameters
sys (InputOutputSystem) – I/O system for which the optimal input will be computed.
timepts (1D array_like) – List of times at which the optimal input should be computed.
integral_cost (callable) – Function that returns the integral cost given the current state and input. Called as integral_cost(x, u).
trajectory_constraints (list of tuples, optional) – List of constraints that should hold at each point in the time vector. Each element of the list should consist of a tuple with first element given by
LinearConstraint()
orNonlinearConstraint()
and the remaining elements of the tuple are the arguments that would be passed to those functions. The constraints will be applied at each time point along the trajectory.terminal_cost (callable, optional) – Function that returns the terminal cost given the current state and input. Called as terminal_cost(x, u).
initial_guess (1D or 2D array_like) – Initial inputs to use as a guess for the optimal input. The inputs should either be a 2D vector of shape (ninputs, horizon) or a 1D input of shape (ninputs,) that will be broadcast by extension of the time axis.
log (bool, optional) – If True, turn on logging messages (using Python logging module).
kwargs (dict, optional) – Additional parameters (passed to
scipy.optimal.minimize()
).
 Returns
ocp (OptimalControlProblem) – Optimal control problem object, to be used in computing optimal controllers.
Additional parameters
———————
solve_ivp_method (str, optional) – Set the method used by
scipy.integrate.solve_ivp()
.solve_ivp_kwargs (str, optional) – Pass additional keywords to
scipy.integrate.solve_ivp()
.minimize_method (str, optional) – Set the method used by
scipy.optimize.minimize()
.minimize_options (str, optional) – Set the options keyword used by
scipy.optimize.minimize()
.minimize_kwargs (str, optional) – Pass additional keywords to
scipy.optimize.minimize()
.
Methods
__init__
(sys, timepts, integral_cost[, …])Set up an optimal control problem
compute_mpc
(x[, squeeze])Compute the optimal input at state x
compute_trajectory
(x[, squeeze, transpose, …])Compute the optimal input at state x

compute_mpc
(x, squeeze=None)¶ Compute the optimal input at state x
This function calls the
compute_trajectory()
method and returns the input at the first time point. Parameters
x (arraylike or number, optional) – Initial state for the system.
squeeze (bool, optional) – If True and if the system has a single output, return the system output as a 1D array rather than a 2D array. If False, return the system output as a 2D array even if the system is SISO. Default value set by config.defaults[‘control.squeeze_time_response’].
 Returns
input – Optimal input for the system at the current time. If the system is SISO and squeeze is not True, the array is 1D (indexed by time). If the system is not SISO or squeeze is False, the array is 2D (indexed by the output number and time). Set to None if the optimization failed.
 Return type
array

compute_trajectory
(x, squeeze=None, transpose=None, return_states=None, initial_guess=None, print_summary=True, **kwargs)¶ Compute the optimal input at state x
 Parameters
x (arraylike or number, optional) – Initial state for the system.
return_states (bool, optional) – If True, return the values of the state at each time (default = False).
squeeze (bool, optional) – If True and if the system has a single output, return the system output as a 1D array rather than a 2D array. If False, return the system output as a 2D array even if the system is SISO. Default value set by config.defaults[‘control.squeeze_time_response’].
transpose (bool, optional) – If True, assume that 2D input arrays are transposed from the standard format. Used to convert MATLABstyle inputs to our format.
 Returns
res (OptimalControlResult) – Bundle object with the results of the optimal control problem.
res.success (bool) – Boolean flag indicating whether the optimization was successful.
res.time (array) – Time values of the input.
res.inputs (array) – Optimal inputs for the system. If the system is SISO and squeeze is not True, the array is 1D (indexed by time). If the system is not SISO or squeeze is False, the array is 2D (indexed by the output number and time).
res.states (array) – Time evolution of the state vector (if return_states=True).
